Keunikan Prisma adalah dapat menyimpangkan arah berkas cahaya. Penyimpangan arah tersebut dinamakan sudut deviasi (δ)
Keterangan Gambar:
Jika tanpa prisma arah awal sinar adalah arah 1 tetapi karena ada prisma arah sinar menyimpang ke arah 2.Sudut penyimpangan dinamakan sudut deviasi (δ)
Dirumuskan δ = (i1 + r2) – β
Mengapa dirumuskan demikian ?
MARI KITA BAHAS….
Perhatikan Gambar berikut.
Keterangan Gambar:
δ : sudut deviasi
β : sudut puncak prisma.(sudut pembias)
i1 : sudut datang bidang bias pertama
i2 : sudut datang bidang bias kedua.
r1 : sudut bias bidang bias pertama
r2 : sudut bias bidang bias kedua.
N: garis normal
Simbol – simbol lain, digunakan untuk membantu menjelaskan pembuktian
Langkah pembuktian pertama adalah
Perhatikan segi empat PQRS. Sudut PSR dan Sudut PQR adalah 90
β = i2 + r1 karena merupakan sudut dari garis normal (N).
Ingat , jumlah sudut dalam segi empat adalah 360 , sehingga:
< SPQ + <=”” qrs=”360″ < SPQ + 90 + 90 + < QRS = 360
< SPQ + < QRS = 360 – 180 = 180 Karena < SPQ = β ; < QRS = α maka
β + α = 180 ………….( persamaan 1)
Perhatikan segitiga SQR. Ingat jumlah sudut dalam segitiga adalah 1800 . sehingga
i2 + r1 + α = 180
α = 180 – ( i2 + r1 ) ……(persamaan 2)
Substitusikan persamaan 2, ke persamaan.1. akan diperoleh:
β + 180 – ( i2 + r1 ) = 180
β = 180 – { 180 – ( i2 + r1 )}
β = i2 + r1 ………………… terbukti !!! …………( persamaan 3)
Langkah pembuktian kedua adalah
δ = (i1 + r2) – ( i2 + r1 )
Perhatikan sudut δ, ia berpelurus dengan sudut θ, sehingga persamaan menjadi:
δ + θ = 180 ….( Pers. 4 )
Perhatikan segitiga SQδ , jumlah sudut dalamnya adalah 180 , sehingga menjadi:
λ + γ + θ = 180 ….( Pers. 5 )
dari pers 4 dan pers 5 akan diperoleh:
λ + γ + θ = δ + θ
λ + γ = δ………(Pers. 6)
Perhatikan titik S, karena sudut bertolak belakang sama besar maka:
r1 + γ = i1 atau γ = i1 – r1 ………(Pers 7)
Perhatikan titik Q, karena sudut bertolak belakang sama besar maka:
i2 + λ = r2 atau λ = r2 – i2 ………(Pers 8)
Dari (pers 6) , (pers 7) dan (pers.8) akan diperoleh:
( r2 – i2 ) + ( i1 – r1 ) = δ
atau
r2 – i2 + i1 – r1 = δ
r2 + i1 – i2 – r1 = δ
( r2 + i1 ) – ( i2 + r1 ) = δ , terbukti !! …….(Pers 9)
Subtitusikan Pers.3 ke pers 9 ,
δ = (r2 + i1 ) – β
Deviasi Minimum (m ) : sudut deviasi yang terkecil yang dapat terbentuk.
Deviasi Minimum(m ) terjadi jika r2 = i1 dan i2 = r1
Jika Hukum Snellius diterapkan pada bidang bias 1, maka
nu sin i1 = nk sin r1
nu sin ( ) = nk sin ( ) ….. mampu membuktikan????
Jika sudut puncak merupakan sudut sempit /kecil ( paralaks), maka
m = (nk – 1 ) β ….. mampu membuktikan????
nu : indeks bias udara
Wah, akhirnya misteri rumus ini terpecahkan…. haha udah bingung seharian mikirin dari mana asal rumusnya ini, akhirnya dapat juga
Thanks Ya…. It’s Very Effective